Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 3: 872587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571143

RESUMO

Neonatal painful procedures causes acute pain and trigger long-term changes in nociceptive processing and anxiety behavior, highlighting the need for adequate analgesia during this critical time. Spinal serotonergic receptors 5-HT1a and 5-HT3 play an important role in modulating incoming nociceptive signals in neonates. The current study aims to attenuate acute and long-term hypersensitivity associated with neonatal procedural pain using ondansetron (a 5-HT3 antagonist) and buspirone (a 5-HT1a agonist) in a well-established rat model of repetitive needle pricking. Sprague-Dawley rat pups of both sexes received ondansetron (3 mg/kg), buspirone (3 mg/kg) or saline prior to repetitive needle pricks into the left hind-paw from postnatal day 0-7. Control animals received tactile stimulation or were left undisturbed. Acute, long-term, and post-operative mechanical sensitivity as well as adult anxiety were assessed. Neonatal 5-HT1a receptor agonism completely reverses acute hypersensitivity from P0-7. The increased duration of postoperative hypersensitivity after re-injury in adulthood is abolished by 5-HT3 receptor antagonism during neonatal repetitive needle pricking, without affecting baseline sensitivity. Moreover, 5-HT1a and 5-HT3 receptor modulation decreases adult state anxiety. Altogether, our data suggests that targeted pharmacological treatment based on the modulation of spinal serotonergic network via the 5-HT1a and 5-HT3 receptors in neonates may be of use in treatment of neonatal procedural pain and its long-term consequences. This may result in a new mechanism-based therapeutic venue in treatment of procedural pain in human neonates.

2.
Int J Dev Neurosci ; 82(4): 361-371, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393725

RESUMO

Excessive noxious stimulation during the critical neonatal period impacts the nociceptive network lasting into adulthood. As descending serotonergic projections from the rostral ventromedial medulla (RVM) to the spinal dorsal horn develop postnatally, this study aims to investigate the long-term effect of repetitive neonatal procedural pain on the descending serotonergic RVM-spinal dorsal horn network. A well-established rat model of repetitive noxious procedures is used in which neonatal rats received four noxious needle pricks or tactile stimulation with a cotton swab per day in the left hind paw from day of birth to postnatal Day 7. Control animals were left undisturbed. When animals reached adulthood, tissue was collected for quantitative immunohistochemical analysis of serotonin (5-hydroxytryptamine, 5-HT) in the RVM and spinal dorsal horn. Both repetitive noxious and tactile procedures in the neonate decreased the 5-HT staining intensity in the adult ipsilateral but not contralateral spinal dorsal horn. Repetitive neonatal noxious procedures resulted in an increased area covered with 5-HT staining in the adult RVM ipsilateral to the side of injury, whereas repetitive neonatal tactile stimulation resulted in increased 5-HT staining intensity in both the ipsi- and contralateral RVM. The number of 5-HT cells in adult RVM is unaffected by neonatal conditions. This detailed anatomical study shows that not only neonatal noxious procedures but also repetitive tactile procedures result in long-lasting anatomical changes of the descending serotonergic system within the RVM and spinal dorsal horn. Future studies should investigate whether these anatomical changes translate to functional differences in descending serotonergic modulation after neonatal adverse experiences.


Assuntos
Bulbo , Serotonina , Animais , Bulbo/fisiologia , Dor , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal
3.
Pediatr Res ; 91(6): 1361-1369, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34257402

RESUMO

The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.


Assuntos
Serotonina , Medula Espinal , Animais , Longevidade , Nociceptividade , Dor , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia , Medula Espinal/metabolismo
4.
Eur J Neurosci ; 55(1): 295-317, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841582

RESUMO

A growing body of evidence indicates that early-life exposure to selective serotonin reuptake inhibitor has long-term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities. Thus, the aim of this review is to understand how early-life selective serotonin reuptake inhibitor exposure alters the developing prefrontal cortex and amygdala and thereby underlies the long-term changes in pain and its affective comorbidities in later life. While there is still limited data on the effects of early-life selective serotonin reuptake inhibitor exposure on pain, there is a substantial body of evidence on its affective comorbidities. From this perspective paper, four conclusions emerged. First, early-life selective serotonin reuptake inhibitor exposure results in long-term nociceptive effects, which needs to be consistently studied to clarify. Second, it results in enhanced depressive-like behaviour and diminished exploratory behaviour in adult rodents. Third, early-life selective serotonin reuptake inhibitor exposure alters serotonergic levels, transcription factors expression, and brain-derived neurotrophic factor levels, resulting in hyperconnectivity within the amygdala and the prefrontal cortex. Finally, it affects antinociceptive inputs of the prefrontal cortex and the amygdala in the spinal cord. We conclude that early-life selective serotonin reuptake inhibitor exposure affects the maturation of prefrontal cortex and amygdala circuits and thereby enhances their antinociceptive inputs in the spinal cord.


Assuntos
Tonsila do Cerebelo , Inibidores Seletivos de Recaptação de Serotonina , Tonsila do Cerebelo/metabolismo , Analgésicos/farmacologia , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos
5.
Dev Psychobiol ; 63(8): e22210, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813103

RESUMO

The influence of neonatal experiences upon later-life affective behavior is increasingly recognized, but the reported effects on anxiety are often contradictory. The observed effect may depend upon the type of anxiety (state or trait) affected. The current study aims to investigate whether neonatal repetitive needle pricking alters anxiety behavior in adulthood, by assessing both state and trait anxiety in rats. Sprague-Dawley rat pups received four unilateral needle pricks per day, while controls received four tactile stimuli or were left completely undisturbed during the first postnatal week. Mechanical sensitivity was assessed in the neonatal phase and throughout the development. State anxiety was assessed in the open field test and trait anxiety in the elevated zero maze. The results show that repetitive needle pricking leads to acute mechanical hypersensitivity, but does not affect baseline mechanical sensitivity throughout development. In adulthood, animals previously exposed to neonatal procedural pain (including repetitive handling and removal from litter) showed lower state anxiety but did not differ in trait anxiety, as compared with the undisturbed controls. These findings indicate that early-life procedural pain decreases state but not trait anxiety behavior in later life in a rodent model of repetitive needle pricking.


Assuntos
Dor Processual , Animais , Animais Recém-Nascidos , Ansiedade/psicologia , Ratos , Ratos Sprague-Dawley , Tato
6.
Semin Fetal Neonatal Med ; 24(4): 101012, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221544

RESUMO

Pain in newborn children should be prevented due to negative short- and long-term consequences. A good understanding of the development of the nociceptive system in newborns is necessary to enable optimal pain assessment, and most importantly to treat and prevent pain adequately in neonates. So far, preclinical juvenile animal studies have led to a tremendous amount of information regarding the development of the nociceptive system. In addition, they have made clear that the developmental stage of the nociceptive system may influence the mechanism of action of different classes of analgesics. Age specific analgesic therapy, based on post-menstrual age, should therefore be considered by incorporating information on the developmental stages of the nociceptive system in combination with knowledge from pharmacokinetic and -dynamic studies in neonates.


Assuntos
Desenvolvimento Infantil/fisiologia , Manejo da Dor/métodos , Analgésicos/uso terapêutico , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Recém-Nascido , Vias Neurais/crescimento & desenvolvimento , Nociceptividade/fisiologia , Medição da Dor/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...